
Progress OpenEdge

Multi-tenant Database

Workshop

Gus Björklund, Instructor

gus@progress.com

© 2013 Progress Software Corporation. All rights reserved. 2

Introduction

This workshop is intended to introduce you to the inbuilt

multi-tenant capabilities of the OpenEdge 11 RDBMS and

show you how to make use of them in 4GL applications.

We have alternated between lecture and hands-on segments so you will

have a chance to try for yourself the things that we will talk about.

© 2013 Progress Software Corporation. All rights reserved. 3

Preliminaries

 Ask questions when you wish

 Focus of labs is on basic 4GL programming for data access. So sorry,

no GUI stuff.

 Labs are not too long, except for the ones that are

 Take bio breaks as needed when you finish a lab

© 2013 Progress Software Corporation. All rights reserved. 4

LAB Machines

 You each get your own virtual lab machine

 Hosted on Amazon EC2 and accessible via Windows Remote Desktop

 The OpenEdge 11.3.1 release

 The directory C:\mt has some files you will need for the lab portions

© 2013 Progress Software Corporation. All rights reserved. 5

LABs

 Handouts have detailed instructions for each lab

 We have helpers who will assist you if you need help with something or

you get stuck

 If you finish a lab section early, you can explore or try some other things

while you wait for everyone else to finish.

© 2013 Progress Software Corporation. All rights reserved. 6

© 2013 Progress Software Corporation. All rights reserved. 7

Lab 0

Get connected to your

Amazon EC2 AMI

© 2013 Progress Software Corporation. All rights reserved. 8

© 2013 Progress Software Corporation. All rights reserved. 9

Multi-tenant concepts

© 2013 Progress Software Corporation. All rights reserved. 10

Who Cares about Multi-tenancy?

SaaS vendors do.

 Lower costs and operational excellence

• Reduce machine resource requirements (cpu, memory, and disk)

• Reduce operational costs

• Reduce the number of instances

• Cheaper and easier to manage

• Requires fewer administration staff

• Gain economies of scale

 Service efficiency is accomplished best by automation, which requires consistency

• One good way to make that happen for application delivery is with multi-tenancy ...

© 2013 Progress Software Corporation. All rights reserved. 11

Who Cares about Multi-tenancy?

SaaS vendors do.

Much to our surprise, we found that people

who do not do SaaS are interested too.

© 2013 Progress Software Corporation. All rights reserved. 12

What is a Tenant Anyway?

Tenants are:

 Named groups of people (users) that are related in some (organizational) way, share

data, and use the same application(s)

 They might work in the same company, work in same division or dept. of a larger

company, or belong to the same club

 Tenants don't know others may be using the same system

 For example, tenants could be the makers of these fine refreshing beverages:

© 2013 Progress Software Corporation. All rights reserved. 13

Multi-tenancy Options Continuum

 Better economy of scale

 Simpler management

 Target like-customers

 Least cost to serve

 Easier customization, security

 Simpler throttling control

 Target dissimilar customers

 No transformation

Isolating Sharing

Tenant2 Tenant3

App App App

DB DB DB

Infra. Infra. Infra.

Tenant1

ISOLATED
TENANCY

Tenant1 Tenant2 Tenant3

App App App

DB DB DB

Infrastructure

INFRASTRUCTURE
TENANCY

Tenant1 Tenant2 Tenant3

App

DB

Infrastructure

SHARED
TENANCY

Tenant1 Tenant2 Tenant3

Infrastructure

App

APPLICATION
TENANCY

DB DB DB

© 2013 Progress Software Corporation. All rights reserved. 14

Why Multi-tenancy? Vendors Want to...

 Increase infrastructure efficiency

• Do the job will less hardware or more with same

 Reduce operational and administrative labor

• Do the job with less work

 Decrease operating costs

• Allow higher profits to provider

• Allow lower prices to customers

© 2013 Progress Software Corporation. All rights reserved. 15

SaaS Application Customers Want

 Low startup cost

 Fast deployment

 100% uptime

 Responsive applications

 Data security (well, they should anyway)

 Low prices

© 2013 Progress Software Corporation. All rights reserved. 16

Why Database Multi-tenancy?

 Lower SaaS application development cost and time

 Lower SaaS application deployment cost and time

 Lower operational costs

 Lower administrative costs

 Provide more flexibility for OpenEdge ISV partners

 Provide more flexibility for OpenEdge customers

© 2013 Progress Software Corporation. All rights reserved. 17

In 10.2B, you can do this:

© 2013 Progress Software Corporation. All rights reserved. 18

Extra “Tenant ID” Column for Multi-tenancy

Tenant ID Cust ID Name

A 1 Lift Line Skiing

A 2 Urban Frisbee

A 3 Hoops Croquet

B 1 Fanatical Athletes

B 8 Game Set Match

B 9 Lift Line Skiing

C 2 High Tide Sailing

C 7 Pedal Power

C 9 Hoops Croquet

FOR EACH CUSTOMER WHERE (TenantID = A) and (regular stuff):

Tenant A

Rows

Tenant B

Rows

Tenant C

Rows

© 2013 Progress Software Corporation. All rights reserved. 19

What's wrong with that?

Do we need more?

© 2013 Progress Software Corporation. All rights reserved. 20

It Works, But There Are Just a Few Small Disadvantages

 Invasive: you have to change a lot of 4GL code

 Mistakes likely – then data given to wrong tenant

 Lock conflicts can occur among tenants

 Suboptimal performance

• Low locality of reference

• Low database buffer cache efficiency

• Low I/O efficiency

© 2013 Progress Software Corporation. All rights reserved. 21

And Still Other Disadvantages

 Per tenant bulk operations difficult

• Backup, restore, reindex, delete, copy, move

 Tenant-level performance analysis difficult

 Tenant resource consumption metrics difficult

 Tenant resource utilization controls difficult

 and a bunch of other things

© 2013 Progress Software Corporation. All rights reserved. 22

Yes! You do need more.

And with OpenEdge 11, you get more.

The RDBMS has inbuilt multi-tenancy

for both 4GL and SQL applications

© 2013 Progress Software Corporation. All rights reserved. 23

Main purpose of

OpenEdge 11 inbuilt multi-tenancy is to:

Reduce costs for SaaS vendors

How does it work?

© 2013 Progress Software Corporation. All rights reserved. 24

Multi-tenancy Options Continuum

Tenant2 Tenant3

App App App

DB DB DB

Infra. Infra. Infra.

Tenant1

ISOLATED
TENANCY

Tenant1 Tenant2 Tenant3

App App App

DB DB DB

Infrastructure

INFRASTRUCTURE
TENANCY

Tenant1 Tenant2 Tenant3

App

DB

Infrastructure

SHARED
TENANCY

Tenant1 Tenant2 Tenant3

Infrastructure

App

APPLICATION
TENANCY

DB DB DB

Isolating Sharing

 Better economy of scale

 Simpler management

 Target like-customers

 Least cost to serve

 Easier customization, security

 Simpler throttling control

 Target dissimilar customers

 No transformation

© 2013 Progress Software Corporation. All rights reserved. 25

Multi-tenancy Options Continuum

Tenant2 Tenant3

App App App

DB DB DB

Infra. Infra. Infra.

Tenant1

ISOLATED
TENANCY

Tenant1 Tenant2 Tenant3

App App App

DB DB DB

Infrastructure

INFRASTRUCTURE
TENANCY

Tenant1 Tenant2 Tenant3

App

DB

Infrastructure

SHARED
TENANCY

Tenant1 Tenant2 Tenant3

Infrastructure

App

APPLICATION
TENANCY

DB DB DB

Isolating Sharing

 Better economy of scale

 Simpler management

 Target like-customers

 Least cost to serve

 Easier customization, security

 Simpler throttling control

 Target dissimilar customers

 No transformation

© 2013 Progress Software Corporation. All rights reserved. 26

OpenEdge Multi-tentant Tables: NO Extra Column for Tenant ID

Tenant ID Cust ID Name

A 1 Lift Line Skiing

A 2 Urban Frisbee

A 3 Hoops Croquet

B 1 Fanatical Athletes

B 8 Game Set Match

B 9 Lift Line Skiing

C 2 High Tide Sailing

C 7 Pedal Power

C 9 Hoops Croquet

FOR EACH CUSTOMER WHERE (TenantID = A)

Tenant A

Rows

Tenant B

Rows

Tenant C

Rows

© 2013 Progress Software Corporation. All rights reserved. 27

OpenEdge Multi-tentant Tables: NO Extra Column for Tenant ID

Cust ID Name

1 Lift Line Skiing

2 Urban Frisbee

3 Hoops Croquet

1 Fanatical Athletes

8 Game Set Match

9 Lift Line Skiing

2 High Tide Sailing

7 Pedal Power

9 Hoops Croquet

Tenant A

Rows

Tenant B

Rows

Tenant C

Rows

FOR EACH CUSTOMER:

© 2013 Progress Software Corporation. All rights reserved. 28

OE 11 Multi-tenant Tables

 Multi-tenancy built into the database

 Data physically partitioned by

tenant identity

 Tenants share same schema

definition

 Minimal application changes

• Just set a per-database tenant name

Simplifies Development of Multi-tenant Applications Multi-tenancy

1 Lance Armstrong

2 John Cleese

3 Tipper Gore

4 Shaquille O’Neal

7 Ben Stein

8 Captain Picard

2 Lesley Gore

7 Nick Nolte

9 Eric Idle

10 Al Gore

Customer Schema

Tenant 3

(Rent-a-wreck)

Tenant 1

(Hertz Boston)

Tenant 2

(Hertz London)

Car Rental
Application

*Fictitious example

© 2013 Progress Software Corporation. All rights reserved. 29

Multi-tenant Tables: Data Access

Simplifies Development of Multi-tenant Applications Multi-tenancy

 Keys unique per tenant partition

1 Lance Armstrong

2 John Cleese

3 Tipper Gore

4 Shaquille O’Neal

7 Ben Stein

8 William Shatner

2 Dennis Rodman

7 Nick Nolte

9 Lindsay Lohan

10 Al Gore

Customer Schema

Tenant 3

(Rent-a-wreck)

Tenant 1

(Hertz Boston)

Tenant 2

(Hertz London)

Car Rental
Application

*Fictitious example

© 2013 Progress Software Corporation. All rights reserved. 30

Multi-tenant Tables: Data Access

Simplifies Development of Multi-tenant Applications Multi-tenancy

 Keys unique per tenant partition

 Query is tenant-specific

• Authenticate as tenant

– _User

– Client Principal

• Assert tenant identity

1 Lance Armstrong

2 John Cleese

3 Tipper Gore

4 Shaquille O’Neal

7 Ben Stein

8 William Shatner

2 Dennis Rodman

7 Nick Nolte

9 Lindsay Lohan

10 Al Gore

Customer Schema

Tenant 3

(Rent-a-wreck)

Tenant 1

(Hertz Boston)

Tenant 2

(Hertz London)

Car Rental
Application

Tenant 1:

FIND CUSTOMER

 WHERE

 cust-num=2.

find.r

*Fictitious example

© 2013 Progress Software Corporation. All rights reserved. 31

Multi-tenant Tables: Data Access

Multi-tenancy

 Keys unique per tenant partition

 Query is tenant-specific

• Authenticate as tenant

– _User

– Client Principal

• Assert tenant identity

1 Lance Armstrong

2 John Cleese

3 Tipper Gore

4 Shaquille O’Neal

7 Ben Stein

8 William Shatner

Customer Schema

Tenant 3

(Rent-a-wreck)

Tenant 1

(Hertz Boston)

Tenant 2

(Hertz London)

Car Rental
Application

Tenant 1:

FIND CUSTOMER

 WHERE

 cust-num=2.

find.r

2 Dennis Rodman

7 Nick Nolte

9 Lindsay Lohan

10 Al Gore

Tenant 3:

FIND CUSTOMER

 WHERE

 cust-num=2.

find.r

*Fictitious example

© 2013 Progress Software Corporation. All rights reserved. 32

Multi-tenant Tables: Data Access

Super-tenant:

FOR EACH customer

 TENANT-WHERE

 Tenant-id > 0:

DISPLAY

 cust-num, name.

Simplifies Development of Multi-tenant Applications Multi-tenancy

 Keys unique per tenant partition

 Query is tenant-specific

 “Super-tenant” query

• Authenticate & assert identity

• No data of their “own”

• Access to all tenant data

by tenant ID or name

1 Lance Armstrong

2 John Cleese

3 Tipper Gore

4 Shaquille O’Neal

7 Ben Stein

8 William Shatner

2 Dennis Rodman

7 Nick Nolte

9 Lindsay Lohan

10 Al Gore

Customer Schema

Car Rental
Application

*Fictitious example

© 2013 Progress Software Corporation. All rights reserved. 33

Multi-tenant Tables: Data Access

Super-tenant:

FOR EACH customer

 TENANT-WHERE

 Tenant-id > 0:

DISPLAY

 BUFFER-TENANT-ID(cust),

 cust-num, name.

Simplifies Development of Multi-tenant Applications Multi-tenancy

 Keys unique per tenant partition

 Query is tenant specific

 “Super-tenant" query

 Row-level tenant identification

 Virtual column available

for display or selection

(not in table definition)

1 1 Lance Armstrong

1 2 John Cleese

1 3 Tipper Gore

2 4 Shaquille O’Neal

2 7 Ben Stein

2 8 William Shatner

3 2 Dennis Rodman

3 7 Nick Nolte

3 9 Lindsay Lohan

3 10 Al Gore

Customer Schema

Car Rental
Application

*Fictitious example

© 2013 Progress Software Corporation. All rights reserved. 34

3 Types of Tenants

 Default

 Regular

 Super

© 2013 Progress Software Corporation. All rights reserved. 35

Lab 1

Creating a

multi-tenant database

© 2013 Progress Software Corporation. All rights reserved. 36

© 2013 Progress Software Corporation. All rights reserved. 37

Tenant data storage

© 2013 Progress Software Corporation. All rights reserved. 38

Multitenant Storage Area Structure: Tenant Data Partitions

Area

Control

Object

Customer Table

Order Table

Free page-cluster list

CustID Index

© 2013 Progress Software Corporation. All rights reserved. 39

Multitenant Storage Area Structure: Tenant Data Partitions

Area

Control

Object

Customer Table

Order Table

Free page-cluster list

CustID Index

Tenant A’s data

© 2013 Progress Software Corporation. All rights reserved. 40

Multitenant Storage Area Structure: Tenant Data Partitions

Tenant A’s data

Area

Control

Object

Customer Table

Order Table

Free page-cluster list

CustID Index

Tenant B’s data

Tenant C’s data

© 2013 Progress Software Corporation. All rights reserved. 41

Tables: Physical Storage View (Type ii Data Areas)

Linked list of page-clusters

Shared Customer

Table

© 2013 Progress Software Corporation. All rights reserved. 42

OpenEdge Multi-tenant Tables: Automatic Table Partition for Each Tenant

Multitenant Customer Table

Tenant A Tenant B Tenant C

Linked list of page-clusters for each tenant's data

© 2013 Progress Software Corporation. All rights reserved. 43

Numbers

500 tables

10 indexes per table (maybe a bit high)

100 tenants

= (500 * 100) + (500 * 10 * 100)

= 505,000 partitions !!!

© 2013 Progress Software Corporation. All rights reserved. 44

Strategies for Storage Layout

With very many partitions,

you have to keep it simple.

© 2013 Progress Software Corporation. All rights reserved. 45

Strategies for Storage Layout

 Shared tables all in one area

 All tenants in one area

 5 tenants per area

 "stripe" p partitions over n areas (p >> n)

 One storage area per tenant

 3 areas per tenant (data, index, lob)

© 2013 Progress Software Corporation. All rights reserved. 46

Tenants have their

own data partitions
How does database know

to which tenant a user belongs?

© 2013 Progress Software Corporation. All rights reserved. 47

DOMAINS

 A tenant is a collection of users

 A user is a "person"

 A security domain is named set of rules ("policies") for how a group of users identity

and tenant association is verified

 Every tenant must have at least one domain

_User

PK _Userid

PK _Domain-Name*

 _User-Name

 _Password

 _TenantID*

_Tenant*

PK _Tenant-Name

U1 _TenantID

 _Tenant-ExtId

 _Tenant-Description

 _Tenant-Type

 _Tenant-Attributes[64]

 _Tentant-DataArea-Default

 _Tenant-IndexArea-Default

 _Tenant-LobArea-Default

 _Tenant-Sequence-Block

_sec-Authentication-System

PK _Domain-Name

I1 _Domain-Type

I2 _Domain-Desc

I3 _PAM-Module-Name

 _PAM_Callback_Procedure

_sec-Authentication-Domain

PK _Domain-Name

I1 _Domain-Type

I2 _Domain-Desc

I3 _Domain-Enabled

 _Auditing-Context

 _Domain-Access-Code

I4 _Tenant-Name*

© 2013 Progress Software Corporation. All rights reserved. 48

DOMAINS

 When you create a tenant, you must also create a domain.

 The domain specifies how user identity is validated

 Possibilities include:

• _user table has user name and password

• operating system identity

• external system like LDAP, Active Directory, etc.

• Your 4GL code

© 2013 Progress Software Corporation. All rights reserved. 49

How Users and Tenants Are Identified

 Users have names

 Tenants have domains

 Domains have names

 Together the two names are unique

user-name@domain-name

© 2013 Progress Software Corporation. All rights reserved. 50

DOMAINS

When you log in

you must specify user id and

you must also specify a domain.

for example:

mpro –db foo –U user@domain –P password

we will see some other ways later.

© 2013 Progress Software Corporation. All rights reserved. 51

© 2013 Progress Software Corporation. All rights reserved. 52

Lab 2

Defining tenants,

domains, users

© 2013 Progress Software Corporation. All rights reserved. 53

© 2013 Progress Software Corporation. All rights reserved. 54

Continuing with
multi-tenant concepts

© 2013 Progress Software Corporation. All rights reserved. 55

Multi-tenancy: Data Access, Sharing

Tenant Groups

 Some tenants can share the same

data/partition

 Employee access to shared customer list

*Fictitious example

1 Lance Armstrong

2 John Cleese

3 Tipper Gore

4 Shaquille O’Neal

7 Ben Stein

8 William Shatner

2 Dennis Rodman

7 Nick Nolte

9 Lindsay Lohan

10 Al Gore

Customer Schema

Tenant 3

(Rent-a-wreck)

Tenant 1

(Hertz Boston)

Car Rental
Application

© 2013 Progress Software Corporation. All rights reserved. 56

Multi-tenancy: Data Access, Sharing

Group:

“Hertz Customers”

Tenants:

Tenant1, Tenant2

1 Lance Armstrong

2 John Cleese

3 Tipper Gore

4 Shaquille O’Neal

7 Ben Stein

8 William Shatner

2 Dennis Rodman

7 Nick Nolte

9 Lindsay Lohan

10 Al Gore

Customer Schema

Tenant 3

(Rent-a-wreck)

Car Rental
Application

Tenant Groups

 Some tenants can share the same

data/partition

• Employee access to shared customer list

*Fictitious example

© 2013 Progress Software Corporation. All rights reserved. 57

Multi-tenancy: Data Access, Sharing

Tenant Groups

 Some tenants can share the same

data/partition

• Employee access to shared customer list

 Data exists for the life of the group

• e.g. Regional data

 Row identity associated with group

• BUFFER-GROUP-ID()

• BUFFER-GROUP-NAME()

 Group membership is per table

Hertz Customers

(Tenant 1,Tenant 2)

1 Lance Armstrong

2 John Cleese

3 Tipper Gore

4 Shaquille O’Neal

7 Ben Stein

8 William Shatner

2 Dennis Rodman

7 Nick Nolte

9 Lindsay Lohan

10 Al Gore

Customer Schema

Tenant 3

(Rent-a-wreck)

Car Rental
Application

*Fictitious example

© 2013 Progress Software Corporation. All rights reserved. 58

Multi-tenancy: Data Model

*Fictitious example

1 Lance Armstrong

2 John Cleese

3 Tipper Gore

4 Shaquille O’Neal

7 Ben Stein

8 William Shatner

2 Dennis Rodman

7 Nick Nolte

9 Lindsay Lohan

10 Al Gore

Customer Schema

Tenant 3

(Rent-a-wreck)

Tenant 1

(Hertz Boston)

Tenant 2

(Hertz London)

Car Rental
Application

The Data Model

 Multi-tenant objects

• Tables and associated indexes & LOBs

• Sequences

 Shared objects still available

• Same as today

 Shared only, not multi-tenant

• Triggers & stored procedures

• Initial values

 Limits

• Support for up to 32,767 tenants

© 2013 Progress Software Corporation. All rights reserved. 59

Multi-tenancy: Tenant Provisioning

1 Lance Armstrong

2 John Cleese

3 Tipper Gore

4 Shaquille O’Neal

7 Ben Stein

8 William Shatner

2 Dennis Rodman

7 Nick Nolte

9 Lindsay Lohan

10 Al Gore

Customer Schema

Tenant 3

(Rent-a-wreck)

Tenant 1

(Hertz Boston)

Tenant 2

(Hertz London)

Car Rental
Application

Managing Tenants

 Tenant creation: ABL, APIs, DDL & GUI

• Programmatic tenant provisioning

• Tenant partition creation optional

• Tenant level activation/deactivation

 Identification (via “_Tenant” table)

• Database specific tenant ID

• User friendly name: “Hertz, Boston”

• App specific ID (could be UUID)

 Resource access

• Runtime security by user by tenant

• Governors: Limit resource usage

*Fictitious example

© 2013 Progress Software Corporation. All rights reserved. 60

Multi-tenant Tables: Operational Features

1 Lance Armstrong

2 John Cleese

3 Tipper Gore

4 Shaquille O’Neal

7 Ben Stein

8 William Shatner

2 Dennis Rodman

7 Nick Nolte

9 Lindsay Lohan

10 Al Gore

Customer Schema

Tenant 3

(Rent-a-wreck)

Tenant 1

(Hertz Boston)

Operational Features

 Tenant partition maintenance

• Tenant-specific object move

• Add/drop tenants/objects

• Data dump/load

• .df support

• Index maintenance tools

 Monitoring

• Promon, VSTs

• Analysis tools

• .lg file (other log files)

Car Rental
Application

© 2013 Progress Software Corporation. All rights reserved. 61

Regular Tenant 4GL Queries

© 2013 Progress Software Corporation. All rights reserved. 62

Note: 4GL Permissions

 4GL user permissions for tables and columns work the same as before

• CAN* permissions still apply : CAN-READ, CAN-WRITE,

CAN-CREATE, CAN-DELETE, CAN-LOAD, CAN-DUMP

• Only one set of permissions exists for tables, including multi-tenant tables

 All database users are subject to permission settings

• Super-tenants users

• Regular tenant users

• Default tenant users

• Administrators can change permissions, super-tenants by default cannot

 No need to say more.

© 2013 Progress Software Corporation. All rights reserved. 63

4GL Queries

 Work the same as before

 For regular tenants, your code should work without change

 Effective tenant id determines what data is returned.

 What you see depends on who you are

 Same query returns different data for different tenants

for each customer:

 display custnum name.

end.

© 2013 Progress Software Corporation. All rights reserved. 64

Lab 3

Looking at tenant data

© 2013 Progress Software Corporation. All rights reserved. 65

© 2013 Progress Software Corporation. All rights reserved. 66

Now you must go to
the principal's office

© 2013 Progress Software Corporation. All rights reserved. 67

What data will you see ?

Depends who you are.

Database uses your identity to decide.

CLIENT-PRINCIPAL is basis for identity.

© 2013 Progress Software Corporation. All rights reserved. 68

Multi-tenant Identity

The _User table (ABL & SQL) and friends

_User

PK _Userid

PK _Domain-Name*

 _User-Name

 _Password

 _TenantID*

_Tenant*

PK _Tenant-Name

U1 _TenantID

 _Tenant-ExtId

 _Tenant-Description

 _Tenant-Type

 _Tenant-Attributes[64]

 _Tentant-DataArea-Default

 _Tenant-IndexArea-Default

 _Tenant-LobArea-Default

 _Tenant-Sequence-Block

_sec-Authentication-System

PK _Domain-Name

I1 _Domain-Type

I2 _Domain-Desc

I3 _PAM-Module-Name

 _PAM_Callback_Procedure

_sec-Authentication-Domain

PK _Domain-Name

I1 _Domain-Type

I2 _Domain-Desc

I3 _Domain-Enabled

 _Auditing-Context

 _Domain-Access-Code

I4 _Tenant-Name*

© 2013 Progress Software Corporation. All rights reserved. 69

Creating CLIENT-PRINCIPAL tokens

DEFINE VAR hCP1 AS HANDLE.

CREATE Client-Principal hCP1.

hCP1:Initialize(“Alice@avis").

hCP1:SEAL("password1").

Easy, peasy

© 2013 Progress Software Corporation. All rights reserved. 70

Creating CLIENT-PRINCIPAL tokens 2

DEFINE VAR hCP2 AS HANDLE.

CREATE Client-Principal hCP2.

hCP2:Initialize(“Bob@hertz").

hCP2:SEAL("password2")

And there are lots of properties you could set also

Easy, peasy

© 2013 Progress Software Corporation. All rights reserved. 71

Client Principal Object Properties

SESSION-ID

USER-ID

DOMAIN-NAME

AUDIT-EVENT-CONTEXT

CLIENT-TTY

CLIENT-WORKSTATION

DB-LIST

DOMAIN-DESCRIPTION

DOMAIN-TYPE

INSTANTIATING-PROCEDURE

LOGIN-EXPIRATION-TIMESTAMP

LOGIN-HOST

LOGIN-STATE

QUALIFIED-USER-ID

ROLES

SEAL-TIMESTAMP

STATE-DETAIL

TYPE

LIST-PROPERTY-NAMES()

TENANT-ID()

TENANT-NAME()

© 2013 Progress Software Corporation. All rights reserved. 72

Switching Identity with CLIENT-PRINCIPALs

SET-DB-CLIENT(hCP1).

/* now we are Alice */

FIND Customer WHERE name = "Alices Customer".

SECURITY-POLICY:SET-CLIENT (hCP2).

/* Now we are Bob */

CREATE Customer.

name = "Bobs Customer".

© 2013 Progress Software Corporation. All rights reserved. 73

Other Ways to Establish Identity

SETUSERID(“alice@hertz”, “revolution").

CONNECT –U alice@hertz –P revolution.

With a userId@domainName, do:

A CLIENT-PRINCIPAL token will be created for you

automatically, under the covers.

or:

© 2013 Progress Software Corporation. All rights reserved. 74

Lab 4

Looking at tenant data

© 2013 Progress Software Corporation. All rights reserved. 75

© 2013 Progress Software Corporation. All rights reserved. 76

Using the Super-tenant

© 2013 Progress Software Corporation. All rights reserved. 77

Why Do We Need Super-tenants?

 Sometimes you need to operate on data that belongs to other tenants

 Super-tenants exist to allow housekeeping cross-tenant tasks such as

• Saas administration i.e. billing, moving tenants..

• Migration from previous database versions

• Handling of aggregate information across tenants

 Super-tenants have no data of their own

 Super-tenants have special ABL to allow them to:

• Get access to regular tenant data

• Execute legacy code

© 2013 Progress Software Corporation. All rights reserved. 78

Super-tenant

 Special tenant, unlike any other

 Can read and write all tenants data

 Has users, like other tenants

• alice@super, bob@super

 You will have to write NEW code for super tenant

 New 4GL functions for super tenant programming

© 2013 Progress Software Corporation. All rights reserved. 79

Some New and a Few Modified 4GL Functions

 IS-DB-MULTI-TENANT() function

 IS-MULTI-TENANT Property

 SET-EFFECTIVE-TENANT() function

 GET-EFFECTIVE-TENANT-ID() function

 GET-EFFECTIVE-TENANT-NAME() function

 TENANT-WHERE clause

 TENANT-NAME-TO-ID() function

 CREATE statement FOR TENANT qualifier

 TENANT-ID() function

 TENANT-NAME() function

 BUFFER-CREATE Method

 BUFFER-TENANT-ID() function

 BUFFER-TENANT-NAME() function

 BUFFER-TENANT-ID attribute

 BUFFER-TENANT-NAME attribute

 REPOSITION query TO ROWID statement

 REPOSITION-TO-ROWID method

Set/get effective tenant

Check if multi-tenant

filter query by tenant

Identify tenant(s)

Qualify ROWID with tenant

convert name to number

© 2013 Progress Software Corporation. All rights reserved. 80

SET-EFFECTIVE-TENANT () function

 Supertenant can become another tenant

 Can then read and write their data

as if you were they

SET-EFFECTIVE-TENANT ("Avis").

for each customer:

 display custnum

 name.

end.

© 2013 Progress Software Corporation. All rights reserved. 81

TENANT-WHERE query clause

 Super tenant can get all tenants data or some

 Add TENANT-WHERE clause to query

for each customer

 TENANT-WHERE tenant-id () > 0

 and tenant-name() < "M":

 display custnum

 name.

end.

© 2013 Progress Software Corporation. All rights reserved. 82

BUFFER-TENANT-NAME () function

 Tells you which tenant owns buffer contents

for each customer

 TENANT-WHERE tenant-id () > 0

 and tenant-name() < "M":

 display BUFFER-TENANT-NAME (customer)

 custnum

 name.

end.

© 2013 Progress Software Corporation. All rights reserved. 83

© 2013 Progress Software Corporation. All rights reserved. 84

Lab 5

Let's play super-tenant

© 2013 Progress Software Corporation. All rights reserved. 85

© 2013 Progress Software Corporation. All rights reserved. 86

Migration of Existing Data

© 2013 Progress Software Corporation. All rights reserved. 87

How can we get our existing data organized

(moved) into the right tenants partitions?

© 2013 Progress Software Corporation. All rights reserved. 88

Default Tenant

 Special tenant, unlike any other

 NOT intended for general use

 Has tenant id zero and default partition(s)

 Purpose: enable conversion of existing data

 Owns data when you conv1011 and mark tables with data as multi-tenant

 We assume

• you will move the data

• code to move data will be super tenant code

 Once data are moved, default tenant has nothing

© 2013 Progress Software Corporation. All rights reserved. 89

Default Tenant

 I lied. But only a little.

 The default tenant can access regular shared tables

 All users belong to default tenant when database is not multi-tenant enabled

10.2 and earlier databases are not multi-tenant

© 2013 Progress Software Corporation. All rights reserved. 90

Multi-tenant Tables: Data Migration with DIY Tenant ID Column

 Enable multi-tenancy on existing db

 Mark existing table as multi-tenant table

 Data in default tenant partition

 Set super-tenant identity

 Move data

 Truncate empty partition

Schema

1 1 Lance Armstrong

1 2 John Cleese

1 3 Tipper Gore

Customer

2 4 Shaquille O’Neal

2 7 Ben Stein

2 8 William Shatner

3 2 Dennis Rodman

3 7 Nick Nolte

3 9 Lindsay Lohan

3 10 Al Gore

Default

Partition

© 2013 Progress Software Corporation. All rights reserved. 91

Moving the Data with DIY Tenant ID Column

DEFINE BUFFER bCust FOR cust.

FOR EACH Cust WHERE Cust.tenant-id = 1

 TENANT-WHERE BUFFER-TENANT-ID(Cust)=0:

 CREATE bCust USE-TENANT 1.

 BUFFER-COPY Cust TO bCust.

 DELETE Cust.

END.

© 2013 Progress Software Corporation. All rights reserved. 92

Moving the Data with DIY Tenant ID Column

DEFINE BUFFER bCust FOR customer.

FOR EACH customer:

 FIND myTenant WHERE

 myTenant.tenantId = customer.tenantId.

 SET-EFFECTIVE-TENANT (myTenant.Name).

 CREATE bCust.

 BUFFER-COPY customer TO bCust.

 DELETE customer.

END.

© 2013 Progress Software Corporation. All rights reserved. 93

Multi-tenant Tables: Data Migration from DIY Tenant ID Column

1 Lance Armstrong

2 John Cleese

3 Tipper Gore

4 Shaquille O’Neal

7 Ben Stein

8 William Shatner

2 Dennis Rodman

7 Nick Nolte

9 Lindsay Lohan

10 Al Gore

Customer Schema

Tenant 3

(Rent-a-wreck)

Tenant 1

(Hertz)

Tenant 2

(Hertz)

1 1 Lance Armstrong

1 2 John Cleese

1 3 Tipper Gore

Customer

2 4 Shaquille O’Neal

2 7 Ben Stein

2 8 William Shatner

3 2 Dennis Rodman

3 7 Nick Nolte

3 9 Lindsay Lohan

3 10 Al Gore

SETUSERID “alice@hertz1”.

FOR EACH customer:

DISPLAY customer.

NOTE: Existing tenant column

remains but is no longer needed

for new multi-tenant queries.

© 2013 Progress Software Corporation. All rights reserved. 94

Multi-tenant Tables: Data Migration with Database per Tenant

DB #1

(Hertz Boston)

DB #2

(Hertz London)

DB #3

(R.W.)

1 Lance Armstrong

2 John Cleese

3 Tipper Gore

Customer

4 Shaquille O’Neal

7 Ben Stein

8 William Shatner

Customer

2 Dennis Rodman

7 Nick Nolte

9 Lindsay Lohan

10 Al Gore

Customer

© 2013 Progress Software Corporation. All rights reserved. 95

Multi-tenant Tables: Data Migration with Database per Tenant

 Create new multi-tenant db

• Can convert an existing one

• Add tenants

• Load multi-tenant schema

 Dump from current

 Load to new

 proutil DB1 –C dump customer

proutil MTdb –C load customer tenant hertz2

DB #1

(Hertz Boston)

DB #2

(Hertz London)

DB #3

(R.W.)

1 Lance Armstrong

2 John Cleese

3 Tipper Gore

Customer

4 Shaquille O’Neal

7 Ben Stein

8 William Shatner

Customer

2 Dennis Rodman

7 Nick Nolte

9 Lindsay Lohan

10 Al Gore

Customer

© 2013 Progress Software Corporation. All rights reserved. 96

Multi-tenant Tables: Data Migration with Database per Tenant

1 Lance Armstrong

2 John Cleese

3 Tipper Gore

4 Shaquille O’Neal

7 Ben Stein

8 William Shatner

2 Dennis Rodman

7 Nick Nolte

9 Lindsay Lohan

10 Al Gore

Customer Schema

Tenant 3

(Rent-a-wreck)

Tenant 1

(Hertz)

Tenant 2

(Hertz)

DB #1

(Hertz)

DB #2

(Hertz)

DB #3

(R.W.)

1 Lance Armstrong

2 John Cleese

3 Tipper Gore

Customer

4 Shaquille O’Neal

7 Ben Stein

8 William Shatner

Customer

2 Dennis Rodman

7 Nick Nolte

9 Lindsay Lohan

10 Al Gore

Customer

© 2013 Progress Software Corporation. All rights reserved. 97

Benefits of “the best thing since sliced bread”

Simplifies development

 Minimal application changes

 No tenant-based customizations for queries or other data access

Eases deployment

 Tenant access to data is transparent, based on identity

 Tenants can be quickly and efficiently added, removed, and managed

Decreases maintenance overhead

 Fewer databases to manage, better resource utilization

 Tenant-based utilities and tools make maintenance tasks easier

Maintains security of tenant data

 Physical separation within database

 Tenant authentication required for data access

© 2013 Progress Software Corporation. All rights reserved. 98

All

Questions

answered

